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Iterative projection algorithms for phase retrieval are tested on two simple ‘toy’ models. The
result provides useful insights in the behavior of these algorithms.

Iterative transform methods pioneered by Gerchberg
and Saxton [1], are well established techniques for iter-
atively recovering the phase from the knowledge of the
diffraction amplitude. The development of iterative al-
gorithms with feedback in the early nineteen-eighties by
Fienup produced a remarkably successful optimization
method capable of extracting phase information from ad-
equately sampled intensity data [2, 3, 4]. Finally, the im-
portant theoretical insight that these iterations may be
viewed as projections in Hilbert space [5, 6] has allowed
theoreticians to analyze and improve on the basic Fienup
algorithm [7, 8, 9, 10].

These algorithms try to find the intersection between
two sets, typically the set of all the possible objects with
a given diffraction pattern (modulus), and the set of all
the objects that are constrained within a given area called
support (or solvent in crystallography). The search for
the intersection is based on the information obtained by
‘projecting’ the current estimate on the two sets. An
error metric exists to characterize the distance between
the current estimate and a given feasibility set. The er-
ror metric and its gradient are used in conjugate gradient
(CG) based methods such as SPEDEN [11]. A projector
P is an operator that takes to the closest point of a set
from the current point ρ. A repetition of the same projec-
tion is equal to one projection alone (P 2 = P ). Another
operator used here is the reflector R = 2P − I. We con-
sider two sets, S (support) and M (modulus). The sup-
port constraint is convex, while the modulus constraint
is non-convex. Problems arise for non-convex sets, where
projections become multivalued [12].

The support projector Ps acts on the object density ρ
by setting to 0 the density of the object outside a given
region. The modulus projector Pm acts on the density ρ
in the Fourier domain ρ̃ by forcing the modulus |ρ̃| to be
equal to the known one m, but keeping the phase of the
current object in the Fourier domain ρ̃. This operator
is demonstrated to be a projector on the non-covex set
of the magnitude constraint [12]. The same paper dis-
cusses the problems of multi-valued projections for non-
convex sets, which do not statisfy the requirements for
gradient-based minimization algorithms, and the related
nonsmoothness of the squared set distance metric, which
may lead to numerical instabilities. See also [13] for a
follow-up discussion on the non-smooth analysis.

Several algorithms based on these concepts have now
been proposed and a visual representation of their be-
haviour is usefull to characterize the algorithm in various
situations, in order to help chose the most appropriate

one for a particular problem.
The following algorithms require a starting point ρ0,

which is generated by assigning a random phase to the
measured object amplitude in the Fourier domain |ρ̃|.
The first algorithm called Error Reduction (ER) (Ger-
chberg and Saxton [1]) (see also Alternating Projections
Onto Convex Sets [14] or Alternating Projections Onto
Nononvex Sets [5]) is simply:

ρ(n+1) = PsPmρ(n) , (1)

by projecting back and forth between two sets, it con-
verges to the local minimum (gradient type). The eigen-
values of the support projectors are 0 and 1, with cor-
risponding eigenvectors the pixels outside and inside the
support. Replacing the support projector Ps with its
reflector Rs = 2Ps − I, the corrisponding eigenvalues
become -1 and 1, i.e. the charge density ρ outside the
support is multiplied by -1. This algorithm is called sol-
vent flipping in crystallography [15]:

ρ(n+1) = RsPmρ(n) . (2)

The Hybrid Input Output (HIO) [2, 3] is

ρ(n+1)(x) =

{

Pmρ(n)(x) if x ∈ S

(I − βPm)ρ(n)(x) otherwise
(3)

It is often used in conjunction of the ER algorithm, al-
ternating several HIO iterations and one ER iteration
(HIO(20)+ER(1) in our case). Difference Map with
γ1 = −β−1, γ2 = β−1 [7], which requires 4 projections
(two time-consuming modulus constraint projections):

ρ(n+1) = { I +PS [(β + 1) Pm − I]

− Pm [(β − 1) Ps + I]}ρ(n) (4)

The Averaged Successive Reflections (ASR) [8] is:

ρ(n+1) = 1
2 [RsRm + I]ρ(n) (5)

The Hybrid Projection Reflection (HPR) [9] is derived
from a relaxation of ASR:

ρ(n+1) = [Rs (Rm + (β − 1)Pm)

+ I + (1 − β)Pm]ρ(n) (6)

It is equivalent to HIO if positivity is not enforced but it
is written in a recursive form, instead of a case by case
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FIG. 1: The basic features of the iterative projection algorithms can understood by this simple model of two lines intersecting
(1(a)). The aim is to find the intersection. The ER algorithm and the Solvent flipping algorithms converge in some gradient
type fashion (the distance to the two sets never increases), with the solvent flip method being slightly faster when the angle
between the two lines is small. HIO and variants move slightly in the direction where the gap between the two projections
decreases, but at the same time in the direction of the gap, following a spiral path. When the two lines do not intersect (1(b),
HIO and variants keep moving in the direction of the gap. ER, Solvent Flipping and RAAR converge at (or close to) the local
minimum.

form such as Eq. 3. Finally Relaxed Averaged Alternating
Reflectors RAAR (previously named RARS) [10]

ρ(n+1) =
[

1
2β (RsRm + I) + (1 − β)Pm

]

ρ(n) (7)

For β = 1, HIO, HPR, ASR and RAAS coincide.
The first test is performed on the simplest possible

case: find the intersection between two lines. Fig. 1
shows the behavior of the various algorithms, The two
sets are represented by a horizontal blue line (support)
and a tilted black line (modulus). ER simply projects
back and forth between these two lines, and moves along
the support line in the direction of the intersection. Sol-
vent Flip projects onto the modulus, ‘reflects’ on the sup-
port, and moves along the reflection of the modulus con-
straint onto the support. The solvent flipping algorithm
is slightly faster than ER due to the increase in the an-
gle of the projections and reflections. HIO and variants
(ASR, Difference Map, HPR and RAAS) move in a spiral
around the intersection eventually reaching the intersec-
tion. For similar β RAAS behaves somewhere in between
ER and HIO with a sharper spiral, reaching the solution
much earlier. Alternating 20 iteration of HIO and 1 of ER
(HIO(20)+ER(1)) considerably speeds up convergence.

When a gap is introduced between the two lines (Fig.
1(b)) so that the two lines do not intersect, HIO and vari-
ants move away from this local minimum in search for
another ‘attractor’ or local minimum. This shows how
these algorithms escape from local minima and explore
the Hilbert space for other minima. ER, Solvent Flip,

RAAS converges to or near the local minimum. By vary-
ing β RAAS becomes a local minimizer for small β, and
becomes like HIO for β ≃ 1. ER, solvent flip HIO+ER
converge to the local minimum. The properties of SPE-
DEN cannot be fully apreciated in these examples since
the support constraint is represented by a one dimen-
sional set, and this conjugate gradient method is designed
for multidimensional minimization. However it is impor-
tant to remark that such algorithm converges quadrati-
cally to the local minimum, reaching the intersection in
a single step when it exists, and the local minimum when
a gap is introduced between the two sets in fewer steps
than any of the other algorithm described here.

A more realistic example is shown in Fig. 2. Here the
circumference of two circles represent the modulus con-
straint, while the support constraint is represented by a
line. The two circles are used to represent a non-convex
set with a local minimum. It is difficult to represent a
true modulus constraint in real space. For a represen-
tation of the modulus constraint in reciprocal space see
[12]. The advantage of this example is the simplicity in
the ‘modulus’ projector operator (it projects onto the
closest circle). Although a real modulus constraint pro-
jector is not as simple as the one used in this example,
there are similarities: each Fourier space point provides
an n-dimensional ellipsoid type equation.

We start from a position near the local minimum. ER,
solvent flip and HIO+ER all fall into this trap (Fig.
2(a)), although increasing the interval between ER itera-
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tions in the HIO+ER algorithm would allow it to escape
this local minimum. HIO and variants move away from
the local minimum, ‘find’ the other circle, but converge
to the center of the circle, with all but Diff. Map. not
reaching a solution. In the center of the circle the pro-
jection on the modulus constraint becomes ‘multivalued’,
and its distance metric is ‘nonsmooth’. The introduction
of a small a random number added to the resulting solu-
tion at every step allows all the HIO-type codes to escape
stagnation and find the solution (Fig. 2(b)). The ran-
dom number can be as low as the numerical precision
of the computer. For β reduced to .9, RAAS would not
reach the solution, but converge close to the local mini-
mum. As a latest test in this series Fig. 2(c), shows the
behaviour of the algorithms when the support is tangent
to the circle, the two solutions coincide, and the the two
constraints are parallel. The only algorithm to reach the
solution is RAAS, but HIO+ER would also reach the so-
lution if the interval between ER steps was sufficiently
large.

I. POSITIVITY

The situation changes slightly when we consider the
positivity constraint. The previous definitions of the al-
gorithms still apply just replacing PS with PS+:

PS+ =

{

ρ(x) if x ∈ S and ρ(x) ≥ 0

0 otherwise.
(8)

The only difference is HIO which becomes:

ρ(n+1) =

{

Pmρ(n)(x) if x ∈ S and Pmρ(n)(x) ≥ 0

(1 − βPm)ρ(n) otherwise.

(9)
Fig. 3(a) shows that HIO bouches at the x = 0 axis.
As the positivity constraint gets closer to the solution,
none of the algorithms converges to the solution (Fig.
3(b)), with the HIO-type algorithms bouncing between
the regions closer to the two circles. Only Difference
Map for β > 1 converges (Fig. 3(c)). Also HIO+ER
would reach the solution for larger intervals between ER
iterations.

II. CONCLUSIONS

ER is a simple but powerfull local minimizer, HIO and
variants are very powerfull in escaping local minima, but
in several situations fail to converge. When positivity
is introduced, the recursive version of HIO (HPR) con-
verges more ‘smoothly’ to the solution without bounch-
ing on the x = 0 axis. Alternating between HIO and
ER with the correct intervals would have worked in all
the examples shown above. RAAS is a good (single pa-
rameter) way to change from ‘global’ to local minimizer,

although it seems better to start from a high value of
β and decrease it afterwards. Difference Map is succes-
full in a few more of the examples shown above for the
proper choiche of β, however it involves 2 time consuming
modulus constraint operations. To find when stagnation
occours one can monitor the distances (using the proper
error metrics) of the current solution before and after
aplying various projectors, or monitor the autocorrela-
tion between two succesive reconstructions. SPEDEN, a
conjugate gradient based method, reaches a local mini-
mum with quadradic convergence, and provides such kind
of information.

The Solvent flipping algorithm does not show much
success in the examples shown above. Despite this it was
used to improve images [15], and in a modified form to
solve 3D structures ab-initio [17]. Perhaps the reason
for the latter success has more to do with the thresh-
old constraint used. A threshold projector multiplies by
0 everything that is below a given threshold, while a
threshold reflector multiplies it by -1. The application
of this constraint has been proven succesfull in obtaining
ab-initio solution in many circumstances applied in a va-
riety of ways. Apart from Charge Flipping, which uses a
threshold reflector [17], in electron density modification
procedure with SIR [18], in atomicity constraint [16], a
modified histogram constraint using the Difference Map
(H. He, private comm.), and for complex valued objects,
in the shrink-wrap algorithm using an updated support
constraint by thresholding the current object reconstruc-
tion at low resolution [19].

By compressing the image in small spots and by
increasing the flat region, these algorithms based on
the threshold constraint resemble the maximum entropy
method [20], which tries to reduce the amout of informa-
tion in an image and maximize the number of pixels of
equal value (solvent).

What distinguishes shrink-wrap and SIR algorithms
is that they somehow solve the low resolution first, and
gradually introduce high resolution information while
slowly updating the low resolution information. Fienup
has also shown that starting from a low resolution im-
age, slowly increasing resolution improves the algorithm
[21]. Also SPEDEN starting from a low resolution target
has been shown to slowly extend the correct phase in-
formation to higher resolution. One possible explanation
could be that the set based on low resolution is ‘more
smooth’. Perhaps also slowly increasing the gray lev-
els in an image, or the number of possible phases of its
Fourier transform could improve convergence by gradu-
ally introducing more degrees of freedom in the resulting
image, although a set defined by ‘quantized’ levels is also
non-convex rendering it counterproductive.
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FIG. 2: The horizontal line represents a support constraint, while the two circles represent a non convex constraint, i.e. the
modulus constraint. The dashed line divides the region closer to one circle from the other. The starting point is on the circle
to the right, possessing a local minimum distance to the line. (a) The gradient-type (ER and Solvent Flip) algorithms converge
to the local minimum, while HIO and variants move away from the local minimum in the direction of the gap (vertical) untill
they reach the region where the second circle is closer (delimited by the dashed line). From here they try to move in the same
spiral-like path of the two lines (Fig. 1) untill they reach the point where the projecton on the circle and the line are parallel,
and start moving toward the the center of the circle which has the correct solution. They stagnate in the center of the circle
where the projection is multivalued. Only the Diff. Map reaches one of the two solutions. The addition of a small value of
the order of the numerical precision after each iteration solves this stagnation (b). When one of the circles just touches the
other constraint most algorithms either get stuck near the local minimum or stagnate. RAAS is the only one that reaches the
vicinity of the solution (c).
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FIG. 3: (a) The starting point is again on the circle to the right, close to a local minimum. HIO and variant move away from
the local minimum in the direction of the gap untill they reach the region where the circle to the left is closer. Instead of moving
in a spiral like fashon, the iterations move close to the dotted line joining the center of the left circle to the origin, except for
HIO that bounches on the x=0 axis. (b) The solution is very close to 0, and the dotted line originating from the circle to the
left and passing by the origin becomes more tilted. The various algorithms after moving in the vertical direction away from the
local minimum, reach the dashed line and start moving toward the tilted dotted line, falling back in the region closer to the
first minimum. Tthese algorithms bounce between the regions closer to each circle without reaching the solution. With β > 1,
i.e. inverting the order of the operators, Diff. Map converges, and RAAS diverges, while HIO HPR and ASR stagnate.
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